

The road to profitability in the North American battery supply chain Sam Adham, Head of Battery Value Chain, CRU NAATBatt 2025

CRU Why the economics matter – key challenges in the global battery industry

Overcapacity across the supply chain, resulting in pullback of investments

Diversification into new markets, driven by rising protectionism and domestic competition

Basics of cost-effectiveness in the battery supply chain

Upstream: Raw materials

- Resource/reserve feasability
- Location
- Policy & stakeholder support
- Project execution

Midstream: Refined chemicals & Electrode materials

- Process control
- Feedstock cost

Downstream: Battery cells

- Manufacturing excellence
- Location

After basic prerequisites, differentiators offer additional advantages

Upstream: Raw materials

- Resource/reserve feasability
- Location
- Policy & stakeholder support
- Project execution
- Integration

Midstream: Refined chemicals & Electrode materials

- Process control
- Feedstock cost
- Technical innovation
- Location
- Business model
- Price premium

Downstream: Battery cells

- Manufacturing excellence
- Location
- Feedstock control
- Technical innovation
- Price premium

How are incumbent manufacturers achieving cost-effectiveness?

Manufacturing excellence is the basic foundation for all companies

Top manufacturers are in a league of their own

China battery cell production cost, 2024 average, \$/kWh

DATA: CRU Battery Cost Model 'Other Chinese' does not include CATL, which has similar costs to BYD.

Pathways to genuine US cost-competitiveness in battery manufacturing: Focus on automation and yields, leverage advantages in energy costs

DATA: CRU Battery Cost Model

The 'squeezed middle': NA electrode materials & refined chemicals produers must learn from the strategies of Asian peers

Location and feedstock cost control

NMC 811 precursor production cost, Dec 2024, \$ /kg

Technical innovation (process and product), business model, and partnerships

- Deeper technical and investment collaboration with battery manufacturers
- Tolling arrangements and pre-pay offtake structures
- Command a price premium on high-end products:
- High compaction density LFP
- Mid-nickel high-voltage NMC

Costs are higher outside China, but so are margins

CRU

Yes, US domestic lithium may seem like it has high potential...

Some of the largest resources...

Lithium resources by country, Mt LCE

...with low opex costs

Argentina			
Chile			
Jnited States		∎ ←	•
China			
Brazil			
Australia			
Zimbabwe			
Namibia			
Nigeria			
Madagascar			
South Africa			
Canada			
Portugal			
	0	10,000	20,000

Value-adjusted business costs, \$ /t LCE, CIF China Argentina

...and with low technical barriers

Magnesium to lithium ratios in brines, Mg:Li

...but in reality, it will have a limited role in the medium term

Capital costs for US projects are staggering

And supply growth expectations are very low

Additional primary lithium production by year, thousand tonnes LCE

A harsh look at the nickel industry points to a structural advantage of low-cost, Chinese-secured supply

Nickel: All in Sustaining Costs, \$/t, 2025

- China Secured
- Sanctioned
- North America

2025ytd nickel price

Average Cost of
Production (\$/t Ni)China Secured10,600Supply without
FEOC concerns14,000

 Δ \$3,400/t = +\$200 on cost of avg. US EV battery

Cumulative nickel production '000 tonnes

A harsh look at the nickel industry points to a structural advantage of low-cost, Chinese-secured supply

Vertical integration is strategic imperative more than a cost advantage

Battery supply chain production in **2028**, split by IRA 30D tax credit eligibility, %

Foreign Entity of Concern (FEOC)

- Non-compliant
- Potentially compliant (Chinese ownership)

Compliant

CRU Key takeaways: the road to profitability

Evaluating the economics of battery projects can mitigate investment risk

Supply chain goes hand in hand with technical know-how to deliver cost-competitiveness

It is possible to reach cost-effectiveness, under several realistic pathways, but tough choices must be made

CRU provides market intelligence, analysis & strategic consulting covering the full battery value chain

						Battery Value Chain Service
		2 3		Ϊ ω	23	
Mining	Refining	Components	Battery cells	End use	Recycling	
			0			Battery Cost Model
Supply & demand		Costs & pricing				
Asset-level analysis		Technology			Battery Raw Material Services (Li/Ni/Co/Mn/P/Pb)	
s s	upply-chain r	napping		ompetitivenes	SS	Energy Storage / Solar / Power Transition Services
						Energy Storage / Solar / Power mainsition Services
P	olicy		кт С	orporate strat	egy	

Thank you.

Sam Adham Head of Battery Value Chain

CRU. Independent *expert* intelligence